If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+18a+49=0
a = 1; b = 18; c = +49;
Δ = b2-4ac
Δ = 182-4·1·49
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-8\sqrt{2}}{2*1}=\frac{-18-8\sqrt{2}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+8\sqrt{2}}{2*1}=\frac{-18+8\sqrt{2}}{2} $
| 2x+12=5x–18 | | b^2-10b-23=0 | | 2-3x+6x=2 | | -2a-3=-9 | | 6x-5=4x+35. | | v^2-8v-65=0 | | (2x-1)+31+90=108 | | i/5=-9 | | 9x/3–1=5 | | 5x-12°=3x+48° | | 5=9x/3–1 | | 12n-4=20 | | 27=(4+5)x | | 200=(x+9)10 | | 2x-6x+30-50+5x=180 | | n=113n+7 | | 54=(x+3)6 | | x^2+(x-2)^2=52 | | 9/30=5/x | | 1/5(2x-6)=3x+4 | | 13z-27=77 | | 3.5(x+2)=7. | | x2+8=X4 | | 7n-18=38 | | 3(x-1)+48+45=180 | | 9x–18=54. | | 9d-3d+6d-5=4d=0 | | 9=10+a/6 | | 2xx10=60 | | (x+2)^4/3=16 | | 60=-5(p-1) | | 60=–5(p–1) |